蚀刻液磷酸的生产工艺

利用硫酸分解


主要是用硫酸分解磷矿,然后将生成的磷酸与硫酸钙分离。其主要反应式为:
Ca10F2(PO4)6 10H2SO4 mH2O─→10CaSO4·nH2O 2HF 6H3PO4 (m-10n)H2O

为避免反应生成的硫酸钙在磷矿颗粒表面形成膜层,阻碍反应继续进行,工艺上反应过程是分成两步进行。
第一步是磷矿溶解在磷酸(由后续工序返回的一部分)中生成磷酸一钙;
第二步是硫酸与磷酸一钙反应生成磷酸和硫酸钙:Ca10F2(PO4)6 14H3PO4─→10Ca(H2PO4)2 2HF;10Ca(H2PO4)2 10H2SO4 mH2O─→10CaSO4·nH2O 20H3PO4 (m-10n)H2O。

在不同的反应温度和不同的磷酸及游离硫酸浓度条件下,硫酸钙可以有三种水合物:无水物(CaSO4)、半水物(CaSO4·?H2O)和二水物(CaSO4·2H2O)。硫酸钙水合物存在的温度和含P2O5的浓度范围的相图,在实际上受游离硫酸浓度和杂质的影响,所以在应用上是近似的。

实际生产条件中,二水物硫酸钙的结晶区是磷酸浓度28%~32%P2O5、温度70~80℃。在这样条件下的磷酸生产,称为二水物工艺,它一直是工业上使用最普遍的工艺。半水物硫酸钙的结晶区是磷酸浓度40%~50%P2O5、温度90~110℃;采用这样的条件的磷酸生产,称为半水物工艺,为少数工厂所采用。无水物硫酸钙在磷酸浓度和温度很高的条件下稳定;由于材料腐蚀和其他技术上的困难,其生产工艺一直未取得成功。

湿法生产

湿法磷酸生产工艺称为硫酸钙再结晶工艺,其过程中包含着有硫酸钙结晶水合物的转变。

发展这类工艺的目的不外乎是为了获得含P2O5浓度较高的磷酸;获得较高的收率(以P2O5计);获得含杂质少的石膏。已经实现了工业化的有三种:
①半水物-二水物一段过滤工艺。控制反应物料液相浓度为30%~32%P2O5、反应温度80~100℃,使硫酸钙先生成半水物结晶,然后温度下降为65℃左右,将结晶转化为二水物后再过滤。
②半水物-二水物两段过滤工艺。用酸分解磷矿时使石膏先生成半水物结晶,控制反应物料液相浓度为40%~50%P2O5、温度90~110℃,进行半水石膏分离,获得成品磷酸。半水石膏再转入另一个反应器水化成二水物石膏,控制反应温度为约65℃、磷酸浓度为10%~15%P2O5,进行二水物石膏分离。
③二水物-半水物两段过滤工艺。磷矿用酸分解时,使石膏先生成二水物结晶,控制温度约为65℃,用离心机分离二水石膏,获得浓度为35%~38%P2O5的成品,二水石膏转入再结晶器转化成半水石膏,控制磷酸浓度为20%~25%P2O5,硫酸浓度为约20%H2SO4,反应温度为80~100℃,分离半水石膏,滤洗液返回二水物结晶槽。

湿法磷酸的生产,目前仍以二水物流程为主,占世界生产能力的90%以上。原因是技术较为可靠、工艺操作条件的范围宽、设备材料的腐蚀比较容易解决和投资低等。

热法生产


热法磷酸是黄磷在空气中燃烧生成五氧化二磷,再经水化制成。

1838年,首次制成工业用的黄磷,1855~1890年间在欧洲建立了黄磷的生产厂。20世纪40~50年代,美国和德国发展了黄磷和热法磷酸的生产技术。60年代,美国曾计划大量发展黄磷和热法磷酸生产以用于肥料工业,旨在利用便宜的能源和运输黄磷比较经济的优点,后由于能源涨价,计划未能实现。热法磷酸比湿法磷酸浓度高,且产品纯,但耗电量大,价格昂贵。在水电有富余的地区,热法磷酸具有发展前途。现在除了苏联有少量用于肥料生产外,热法磷酸主要用于工业方面。1981年世界产量为3.145Mt(P2O5)。含硅高的磷矿,适宜于元素磷生产。含铁、镁和铝杂质高的磷矿用于黄磷生产时,将使电耗增加、磷收率降低。

有两种生产流程:一种是把燃烧和水化安排在同一塔内进行,液态磷从塔顶向下喷雾,空气由塔顶吸入,磷在塔中燃烧,冷的磷酸喷入塔内,使五氧化二磷进行水化反应,一部分冷的磷酸从塔顶形成膜层沿壁向下流动,以保护塔壁。从塔底部抽出热法磷酸送去冷却后返回塔顶。另一种是把燃烧和水化分开在两个塔内进行,在塔的外壁大量喷水以移除反应热。

多磷酸生产


生产方法有热法和湿法两种。热法多磷酸生产只需在热法磷酸的生产过程中强化冷却系统,使五氧化二磷在少量水的情况下水化即可。湿法多磷酸生产是将浓度为52%~54%P2O5的磷酸进一步脱水。有三种脱水工艺:浸没燃烧脱水;膜式蒸发脱水;强制循环真空蒸发脱水。